Карбид вольфрама
Карбиды представляют один из классов углеродных неорганических соединений. Они очень популярны, а самое большое использование имеют карбиды тугоплавких металлов, в том числе карбид вольфрама (формула WC либо W2C). Этот материал предоставлен углеродно-вольфрамовым соединением с массовой долей первого элемента 6,1%.
Рассматриваемое вещество представлено серым порошком в двух кристаллографических вариантах: с кубической (полукарбид) и гексагональной (монокарбид) решетками. Обе модификации встречаются в температурном диапазоне 2525 — 2755°С. Вторая фаза ввиду отсутствия области гомогенности при отклонении от стехиометрического состава образует графит или переходит в W2C, а при температуре более 2755°С разлагается до углерода и первой фазы. Последняя отличается обширной областью гомогенности, сокращающейся при снижении температуры.
Монокарбид вольфрама менее тверд в сравнении с полукарбидом, но способен формировать кристаллы. Второй вариант значительно более температуро- и износоустойчив. К тому же он способен к внедрению в твердые растворы.
Карбид вольфрама отличается хрупкостью, но под влиянием нагрузки проявляет пластичность полосами скольжения.
Кристаллы рассматриваемого вещества характеризуются анизотропией твердости от 13 до 22 ГПа на разных кристаллографических плоскостях.
По сравнению со сталями карбид вольфрама прочнее, но более хрупок и менее подвержен обработке.
Монокарбид имеет температуру плавления 2870°C, кипения — 6000°C. Его молярная теплоемкость равна 35,74 Дж/(моль-*К), теплопроводность — 29,33 кДж/моль. Плотность карбида вольфрама данного типа составляет 15,77 г/см 3 .
Несмотря на то, что температура плавления большая, термостойкость рассматриваемого материала низка. Это обусловлено отсутствием термического расширения ввиду жесткой структуры. При этом карбид вольфрама характеризуется высокой теплопроводностью. С повышением температуры данный параметр у монокарбида возрастает вдвое быстрее, чем у полукарбида.
Рассматриваемые материалы имеют хорошую электропроводность, особенно полукарбид (в 4 раза выше, чем монокарбид). Удельное электросопротивление возрастает с повышением температуры, но при этом снижается упругость. Это обуславливает обрабатываемость электрофизическими методами. Так, при введении источника тепла в области обработки возрастает температура, способствуя размеренному разрушению структуры материала.
Твердость определяется температурой формирования карбидов в вольфрамовом порошке и (в меньшей степени) их пористостью. С ростом температуры увеличивается подвижность атомов составляющих соединения элементов, вследствие чего устраняются дефекты в зернах. Анизотропия параметров карбидов вольфрама меньше, чем для металлов. К тому же данные материалы отличаются наилучшей для тугоплавких металлов упругостью, которая увеличивается с ростом пористости. Однако пластичность низкая (до 0,015%).
Карбид вольфрама характеризуется стойкостью к многим кислотам, а также их смесям при обычной температуре, но растворим в некоторых кислотах при кипении. Не подвержен растворению в 20% и 10% гидроксиде натрия. Ввиду высокой летучести оксида вольфрама начинает окисляться при 500 — 700°C и завершает окисление при более 800°C.
Наконец, ввиду химической инертности данное соединение нетоксично.
Существует несколько методов получения рассматриваемого соединения.
Первый — углеродное насыщение вольфрама. В результате на поверхности вольфрамовых частиц образуется монокарбид. Из него диффундирует углерод, формируя слой полукарбидного состава.
Для данных работ применяют вольфрамовый порошок и сажу. Данные материалы смешивают в определенном соотношении, наполняют ими, утрамбовывая, емкости и ставят в печь. Во избежание окисления операцию производят в водородной среде, так как в результате взаимодействия данного элемента с углеродом при 1300°С формируется ацетилен. Рассматриваемая технология предполагает формирование карбида вольфрама преимущественно за счет углерода. Температурный режим определяется гранулометрическим составом порошка. Так, для мелкозернистого используется температурный интервал 1300 — 1350°С, для крупнозернистого — 1600°С. Длительность выдержки равна 1 — 2 ч. В завершении получается карбид вольфрама, представленный немного спекшимися блоками.
Второй вариант — углеродное восстановление вольфрамового оксида с карбидизацией. Данный метод предполагает совмещение карбидизации и восстановления. Процесс идет в среде CO и водорода.
Кроме того, карбид вольфрама получают из газовой фазы путем осаждения. Такое производство предполагает разложение при 1000°С карбонила вольфрама.
Восстановление вольфрамовых соединений с карбидизацией. Данную операцию осуществляют путем нагрева в водородной среде смеси паравольфрамата аммония либо вольфрамового ангидрида и вольфрамовой кислоты при 850 — 1000°С.
Наконец, выращивают кристаллы данного соединения из расплава. При этом используют смесь из Co и 40% монокарбида. Ее расплавляют при 1600°С в тигле из оксида алюминия. После гомогенизации температуру постепенно (1 — 3°С/мин) снижают до 1500°С и выдерживают 12 ч. Далее материал охлаждают и в кипящей соляной кислоте растворяют матрицу.
Кроме того, большие монокристаллы (до 1 см) выращивают по методу Чохральского.
Применение
Благодаря приведенным выше свойствам, существует несколько сфер применения карбида вольфрама.
- Его применяют для выпуска деталей большой коррозионной и износоустойчивости и твердости: фрез, абразивных материалов, резцов, сверл, долот и т. д.
- Рассматриваемое соединение применяют для наплавки и газотермического напыления с целью повышения износостойкости путем создания твердой поверхности.
- Карбид вольфрама служит материалом для часовых браслетов, пулевых и снарядных сердечников, ювелирных изделий и т. д.
Оптимальным температурным режимом для предметов из него считают диапазон 200 — 300°С. Упругость данного материала обеспечивает его применение при знакопеременных нагрузках.
Ввиду плохой обрабатываемости карбид вольфрама применяют не в чистом виде, а создают сплавы с ним. Наиболее распространены твердые варианты с кобальтом. Также встречаются более сложные сплавы, включающие карбид тантала и титана. При этом вольфрам в любом случае преобладает, составляя 70 — 98%.
Ввиду высокой температуры плавления при создании сплавов рассматриваемого материала не используют такие технологии, как легирование, плавление и смешение, так как они нерентабельны. Вместо этого применяется порошковая металлургия. Принцип данного метода состоит в использовании порошков основного металла и примеси. При этом они значительно отличаются температурой плавления. Их смешивают барабанно-шаровой мельницей и прессуют в близкую к целевой форму. Ей придают монолитность путем спекания при температуре, меньшей точки плавления основного металла. Далее приведена последовательность выполнения.
Порошок карбида вольфрама измельчают до гранул целевого размера, предварительно увлажнив. Данный параметр определяется назначением материала, так как обуславливает конечные параметры изделий. Далее порошок смешивают со связующим веществом, представленным, например, кобальтом либо прочими металлами, и восковой мягкой смазкой, служащей для скрепления гранул после брикетирования.
После этого порошок сушат в распылительной или вакуумной сушилке, удаляя большую часть влаги. С целью улучшения текучести полученных гранул производят пеллетизацию, придавая им шарообразную форму.
Существует несколько технологий придания порошку формы. Наиболее распространены среди них литье под давлением и прессование. Новейшим методом является 3D-печать. В завершении формирования частицы скреплены связующим восковым веществом.
Далее форму подвергают нагреву. В результате удаляется восковый загуститель, а гранулы тугоплавкого металла скрепляются частицами расплавленного связующего металла после охлаждения. В рассматриваемом случае тугоплавким металлом является карбид вольфрама. Параметры конечного материала определяются долей связующего вещества: чем его больше, тем выше износостойкость и прочность, чем меньше — тем больше твердость и хрупкость.
По завершении спекания предмет подвергают конечной обработке в виде шлифовки и т. д. К тому же на изделия из карбида вольфрама нередко наносят дополнительное защитное покрытие.
Вольфрамокобальтовые сплавы характеризуются минимальным напряжением на срез, значительной зависимостью параметров от доли кобальта, плохой обрабатываемостью. Первая особенность обуславливает неуместность таких материалов для применения в условиях сдвиговых деформаций. Из-за плохой подверженности обработке перед использованием заготовки из них пластифицируют либо спекают. Наличие кобальта повышает эксплуатационные температуры карбидов вольфрама до 700 — 800°С. По данному параметру они превосходят все марки сталей, кроме жаропрочных. Следует отметить, что, в отличие от чистого карбида вольфрама, его соединения в некоторых соотношениях с кобальтом токсичны.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.